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1. Ionic polarizabilities as calculated from the present 
theory 

Using experimental values of P44 and assuming the 
oscillator strength f l  = f2 -- I, we calculated the 
polarizabilities of the various ions for wavelength 5890 

and compared them with the values obtained by 
other workers. The results are given in Table 2. 

2. Polarizabilities of ions at different wavelengths 

Equation (12) is used to calculate the polarizabilities of 
Cs + and I-  ions at different wavelengths in the range 
3000-5890 A. The data on the stress-optic dispersion 

Table 3. Variation of  polar&abilities o f  Cs + and I- 
with wavelength 

Wavelength (A) acs a I a = Ctcs + a I 

3022 2.56 8.56 11.12 
3466 2.53 8.00 10.53 
4047 2.52 7.59 10.11 
4358 2-52 7.43 9.95 
5085 2.52 7.27 9.79 
5460 2.52 7.11 9.63 
5790 2.52 7.06 9.58 
5890 2.52 7.04 9.56 

are taken from Laiho<& Korpela (1968) and refractive 
indices from Rodney~(1955). The results are given in 
Table 3. The <total/polarizability is seen to increase 
towards shorter,,wavelength, while the polarizability of 
the positive ion is almost constant over the entire range. 
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Primary Extinction for Finite Crystals. Square-Section Parallelepiped 
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The results are given for the calculation of the profile function of the scattering curve and the calculated 
primary extinction factor for a crystal in the form of a square-section parallelepiped as a function of its size 7:, 
expressed in extinction length units. The calculations are based on the equations of the dynamical theory of 
diffraction. Asymmetry of the scattering curve and a shift of its principal maximum to larger angles, with r 
and the Bragg angle increasing, are found. Approximate expressions for calculating the primary extinction 
factor as a function of r are given. 

1. Introduction 

As is shown, the existing approximations of the theory 
of X-ray diffraction in mosaic crystals are usually based 
on the supposition of primary and secondary extinction 
effects. The primary extinction is connected with the 
effect of coherent scattering in a single mosaic block. 

Being an incoherent effect of scattering, the secondary 
extinction is calculated by the Darwin-Zachariasen 
transfer equations. These equations have been used in 
estimating primary extinction in finite crystals 
(Zachariasen, 1967; Becker & Coppens, 1974), 
though they do not really apply to coherent scattering 
effects. 
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Primary extinction calculations, strictly speaking, 
should be based on the dynamical theory of diffraction, 
the solution of which for finite crystals of arbitrary 
configuration is a difficult problem. In the papers by 
Uragami (1969, 1970, 1971) and Afanas'ev & Kohn 
(1971) the method of solution of the equations of the 
Takagi-Taupin dynamical theory (Takagi, 1962, 1969; 
Taupin, 1967) for finite crystals has been developed. 
This method can be used for calculating the primary 
extinction factor and the angular distribution of X-ray 
intensity diffracted in a single mosaic block, which can 
be used for determining the scattering cross section per 
unit volume of a crystal, taking into account the effect 
of primary extinction in the transfer equations 
(Zachariasen, 1967; Becker & Coppens, 1974) as well 
as for establishing a connection between the primary 
and secondary extinction factors. 

In this paper, on the basis of the Takagi (1969) 
equations, the results of calculating the angular distri- 
bution of intensity and the primary extinction factor for 
a crystal which is a square-section parallelepiped as a 
function of its size and its diffraction parameters are 
given. 

2. Integral representation for the amplitude and power 
of  diffracted radiation 

The Takagi (1969) equations 

OEo iZo K ix_ h CK 
- -  _ E o - -  E 1 
Os o 2 2 

O E I - - i ( x 2 K  2 K ) E 1 - - i X h C K  E o, (2.1) 
Os 1 2 

determining the field amplitudes E 0 and E 1 in the 
crystal, can be written as 

82 g'0 x 
._____z._, + a~0 ,1 = 0 (2. la) 
0s 0 0sl 

where 
~o. 1 = Eo. 1 exp[iao(So + s~) -- it1 sl], (2.2) 

go K X-h CK Xh CK 
. . . .  ( 7 =  ~ 1 0 2  ; 0 1 =  " 0 2  - -  - -  ; 

a ° - -  2 ' 2 ' 2 

fll = a K / 2  = t K  sin 20 B and e = 0 B - 0 is the angular 
divergence from the Bragg angle; X0, X-h, ~th are the 
Fourier components of crystal polarizability for 0, h 
and h reciprocal lattice points respectively; K is the 
wave number; C = 1 or cos 20B; s o and s 1 are coordi- 
nates of the real space along the incident and scattering 
vectors respectively. 

The conventional integral form of representation of 
the solution of (2.1) (Uragami, 1969) can be reduced to 

OV OU 
U ~ d s o  + V ~ d s l = O  

FOR FINITE CRYSTALS 

f V OU 8 V  
~So dso + U-~sl ds, = 0, (2.3) 

where U is the amplitude of the field ~e o or 8' 1 and V is 
the Green's function fulfilling the conditions: 

I 0V 0, ~ = 0 ,  V = 1  (2.4) 
COS0 sl = ste s0=sop So = sop 

| Sl : SIp 

Sot,, ste are coordinates of the point P at which the 
values of the field amplitudes are found. 

We express the amplitude of the field of the radiation 
diffracted in a crystal having the form of square- 
section parallelepiped in integral form (Fig. 1). Our 
considerations are limited to the case of the Bragg angle 
in the range from 0 to 45 o. The wave incident at s o on 
the crystal surface ToRoR has amplitude E~". Depend- 
ing on the boundary conditions of the Green's function, 
the contour R o R T  along which E 1 should be deter- 
mined is divided into four parts: R o R - R B  ~-BIB2-B2 T. 

When the integration contours (Fig. 1), which 
include RoR,  are considered the Green's function V~ 
fulfilling the condition (OV~/OSo)lRo R = 0 (Uragami, 
1969) can be written as: 

V~ = Jo{2a[(Soe-  So)(slz,-- Sl)] 1/2 } 

s 0) 71/701 - s0/ 
q- 

71[S1Ro + ( S o p  70/71) - -  Sl]  

x J2[2a({l(su,--  sm o) 71170] - -  So} 

x [S~o + (s0~ 7o/7,)  - s l ] ) l n ]  - ( 2 .5 )  

On integration contours which include T o T, the Green's 
function V r fulfilling Vr[ror = 0 is determined by 

V r = Jo{2a[ (Soe - So) (sle -- sl)] in } 

- Jot2a({Soro + [ste 71/7o] -- s,} 

x 11(Soe--Soro)7O/711--Sl})1/2]. (2.6) 

On the contours which do not include either the upper 
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Fig. 1. The scheme o f  crystal  division into the areas for calculat ion 
o f  the diffracted X- ray  fields. (a) 0 _< tan 0 n < 0-5, (b) 0-5 < 

tan 0 n <- I. 
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or the lower crystal boundary, the Green's function is 
determined by one term: 

V l = Jo{2a[(Sop- So)(S w -- s,)l 'n}. (2.7) 

Here Jo and J2  a r e  the Bessel functions, ~}0,1 ---- 
Icos(n. s0.1)l, where n is vector of the inner normal to 
the surface RoR or ToT. 

The case o f  diffraction when 0 < tan 0 B -< 0-5 

When (2.3) is applied to the contours A2PtRoA2, 
A4P2RIRoA 4, AsP3AIA 5 and TIP4A3ToT 1, taking 
into account the corresponding boundary conditions 
we find amplitudes Zl on RoR, RB, ,  B , B  z and B2T: 

Zw,  = - i a  2 f ZIO n VI R ds I - i o  2 f Zio n V~ ds l, (2.8) 
R'o A2 

RI Ro 

Zle 2 = -- ia 2 f Zio n V(  a s , -  icr 2 f Zio n V(  dsp (2.9) 
Ro A4 

AI 

Z i p 3 = - - / a  2 f Zio n V, ds,,  (2.10) 
A5 
A3 

g,p,  = - - i a  2 f Zio n V T dSl, (2.11) 
To 

where Zio" is determined from El0 " by (2.2). On passing 
to a rectangular coordinate system (Fig. 1) with 
lY01 = I~ll, we can write the expression for E l, over the 
indicated ranges, as 

Ew -- 0nexp i cos O n rcfl y 

[! : × Eion0',) Ddy, + Elon(yz) Gdy~ 

o 2.12) 

E w 2 -  2 sin 0 n exp i + 

I 
tan On tan On+x 

tan OB-x 

E IP3 - -  
io2t [ ( tcv nflX ) ]  

2sinO nexp i ~ +  
x+ tan 0n 

× f E'on(x,)Mdx,, 
x-tan On 

Elon(xl) M d x  1 

(2.13) 

(2.14) 

E i p  4 2si--n0 n exp i c o ~ n + t a - ~ n ]  

x Eion(xl)Mdxi 
x -  On 

Elon(x,) Tdx I ] "  
2-tan 0B-x 

(2.15) 

Here 

[( >]{[& ] D = exp i -- - -  + nfl y, do (Y - - Y l )  
COS 0 B 

+ Jz (y - -y , )  , (2.16) 

G = e x p [ -  infly 2] Jo _ y ~ ) l / 2  

+ - L _ y~)1/2 , 

Y +Y2  
(2.17) 

L = e x p [  [_\sin0 n t a n 0  n x2 

{[' ] X Jo  ~ (222 - -  X2) 1/2 + - -  

x :2 ( x ~ -  x2) ',2 , 

X I .=ex,[ .(. 
{& } x Jo  [ t a n  2 0 B - -  ( x -  Xl)2] 1/2 , 

2o,]} 
X 2 - -  X 

X 2 + X  

X 1 N=ex,[ 
×J2  s-~-n ~ [tan2 OB-- ( x 

[ < r = e x p  --infl 1 + t~n O B 

x J0 [tan z O n -- ( 2 -  

+ xy] m}, 

X - -  Xl)2] I / 2 }  , 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

z =  t, 1< = 
v C ~ '  

Y2 = x~ tan On; x 2 = (1 - Yl) tan as; 

fll t 
2ncos  0 B' 

F 0, Fh,_F_ h are structure amplitudes for reflections 0, 
h and h; t is the edge length of the parallelepiped sec- 
tion; 2 is the wavelength; v is the unit-cell volume. 
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The case of  diffraction, when O. 5 <_ tan On < 1 

As can be seen from Fig. 1, in this case the ampli- 
tude E 1 on RoR, RB~ and B2Twill have the same form 
as that given above. To determine ~ in the area BIB 2 
(Fig. lb) the expression (2.3) is applied to the contour 
QP3RIRoQ and, taking account of boundary con- 
ditions (2.4), one obtains 

gl Q 

f f fire3 = ff lO -- itr2 ffion VIRdSl- ff l ~ dso' (2.22) 
Ro Ro ~S0 

where ~'l in the area RoQ o is determined as was (2.10) 
and in the area Q0 Q as was (2.11). 

Having made the necessary transformations in (2.22) 
and in passing to non-dimensional rectangular coordi- 
nate system with ly01 = lyll, one obtains: 

'0'2' r [ /~T ~ X  ~ ]  
Eu'3 - 2 ~m 0B exPL\i - ~  + cosO  

I" tan On 1 

x L  fxx EIOn(x2)LdX2 + f 
tan On-x 1 l 

+ f E lon (X 1 ) Ndxl - f E lon (x I ) Tdx l "  ] 
0 2-tan 0s-x 

(2.23) 

Then, from (2.12)-(2.15) and (2.23), the power and 
integrated intensity of scattering can easily be deter- 
mined. 

Integrated intensity can be represented by the 
following product: 

P = PkYe (2.24) 

where Pk is the kinematical integrated intensity for the 
crystal and yp is the primary extinction factor. The 
latter is determined by the integral: 

GO 

y e =  J R(fl)dfl. (2.25) 
--o0 

Here R ( ~  is a profile function of the scattering curve. 
With tan O n < 0.5 

tan 0 n i (tan 0.)-2 r tan O n 

R(fl)= 4~o  Jydy + f JlxdX 
L 'o 

l - t a n  O n I "l 

+ f J xdX+ f J4xdX (2.26) 
tan 0 B 

with 0.5 _< tan 0 n < 1 

tan 0 n i 
Jydy+  R(fl)-  4 ~  ° "o 

1 - t a n  O n 

(tan 0B)-2[ ' -?  on 

L .'o 
J l x  d x  

t a r  °n f J4 l + J3xdx+ xdx , 
l - t a n  O n tan 0 n _1 

(2.27) 

where 

J lx  ~ 

J~x = 

I f Elo n D d y  1 -4- f E in (~dy 2 , 
0 0 

taro n tan O/+ x 
Eio n L d x  2 + E~} n M d x  l 

o o 
tan 0 n - x 

+ f E~ n NdXl , 
o 

x + tan 0 n 2 
Eton M dx , 

x-tan 0 8 

J4x = Eio n M d X l -  Eion TdXl ' 
x-  tan 0 n 2-tan 0 n -x  

7 J3x = E~n Ldx2 + E~ n Mdxl  
x 0 

tan 0 n-  x 1 2 

+ f ElonNdXl  - f EionTdXl  , 
0 2-tan 0 n -x  

and 3 0 is the power of the incident beam. 
From (2.26) and (2.27) it follows that, if the cross 

section of the crystal is far less than the extinction 
length (r < 1), the function R(fl) with 0 B <_ 45 ° and 
El0 n = const. (plane incident wave) is 

tan0 [ sin'  ] 
+ ( - ~  cos 2 zcfl 2r~fl " (2.28) 

GO 

f R(fl)dfl= 1. 
--o0 

R(fl) -- (n#)2 

In this case 

The second term in (2.28) is stipulated by the edge 
effects. 

3. Dependence of the profile function of the scattering 
curve and the primary extinction factor on crystal size 

Using the above expressions, calculations of the R(fl) 
function and of the primary extinction factor yp 
for the crystal form considered as a function of its 
size, r, have been made using a program written in 
Fortran. The calculations were made for a plane 
incident wave and a non-absorbing crystal with 
different values of parameter x. 

From Fig. 2 it can be seen that as the crystal size 
increases the principal maximum decreases. In the 
chosen scale of measurements of the scattering angle fl 
the integral half-width of the curve R (fl) increases with 
the size of crystal. This means that the integral half- 
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width of the scattering curve, with the effect of primary 
extinction taken into account, decreases more slowly 
with crystal size than in the kinematical case. 

An effect of the tc parameter is revealed by the shift 
of the curve maximum R (fl) to larger scattering angles. 
This shift is caused by the so-called X-ray refraction 
effect. The calculation showed that the value of the 
curve-maximum shift R(fl) at a given Bragg angle and 
crystal size, r, depends linearly on x. At x = 0 this 
maximum occurs with fl = 0. 

It is of interest to examine the dependence on the 
Bragg angle of the shift of the scattering curve maxi- 
mum for a finite crystal of the form under investigation. 
With O n = 0 in the symmetric crystal setting there is 
only the Laue diffraction for which, as is known, there 
is no X-ray refraction effect, i.e. at any K value there 
is no shift of the reflecting curve maximum. When the 
Bragg angle is approaching 90 o, only Bragg diffraction 
takes place, in which the maximum of the scattering 
curve is known to shift to larger angles by an amount 
;(0/sin 2t~ 8. On the basis of  our calculations we esti- 
mated the shift of  the maximum of the scattering curve 
for different Bragg angles (Fig. 3). The shift (AOr,,) has 
been expressed in units ofz0/sin 20B: 

z0  - ~f l , .  c o s  OB/xr. 
AO,,, sin 20 n 

Here fin is the position of the maximum of R(fl)  in 
units of p. As can be seen from Fig. 3 the shift of the 
maximum of the scattering curve for a finite crystal of 
the given form depends not only on the Bragg angle but 
also on the size of the crystal. 

Fig. 4 shows the results of the calculation of the 
primary extinction factor for a finite crystal of  the given 
form. From this figure it can be seen that when crystal 
size does not exceed the extinction length the primary 

R~ 

I 

i "52 

3 

- 3 - 2 - ~  0 , 2 - # - 3 - 2 - 2  0 1 2 -# 
(a) (b) 

Fig. 2. The profile of the scattering curve for crystal blocks in the 
form of a square-section parallelepiped as a function of size: 1. 
r ,~ 1; 2. r = 0.5; 3. r = 1.0; 4. r = 1-5; 5. r=  2-0; with x = 2. 
(a) O n = 10 °, (b) -O n = 40 °. 

extinction factor does not depend on the Bragg angle 
but when the size does exceed the extinction length the 
Bragg-angle values significantly affect the dependence 
of y,, on the size of the crystal. 

In the case of Laue diffraction (O n = 0) the primary 
extinction factor (ye °) as a function of the crystal size is 
affected by the known oscillation effect and is deter- 
mined by the expression: 

1 

yO = J J~[r(1 -- z2)'/21 dz, (3.1) 
0 

which is equivalent to the expression given by 
Zachariasen (1945, p. 133). 

,~0,. 
Xo/sin 20 a 

0.8 

0.6 

0.4 

0-2 

/ /  

I I I I 

20 40 60 80 0~(°) 

Fig. 3. D e p e n d e n c e  on Bragg  angle  o f  the shift o f  the sca t t e r ing  
curve  m a x i m u m  for a finite c rys ta l  with the f o r m  o f  a square -  
sect ion para l le lepiped.  Solid line - ca lcu la t ions ,  da shed  line - 
a p p r o x i m a t e  in te rpola t ion :  1. r = 0.1 ; 2. r = 1 ; 3. r = 2. 
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0.5 

0.25 

0 1 2 3 4 r 

Fig. 4. Primary extinction factor v s  the crystal size for different 
Bragg angles: 1 . 0 ° ;  2. 10°; 3 . 2 0 ° ;  4. 30° ;  5 . 4 0  ° and 6 .45  °. 



326 PRIMARY EXTINCTION FOR FINITE CRYSTALS 

The analysis of the calculations carried out has 
shown that with r < 3, the value of the primary extinc- 
tion factor can be determined with an error of 1.5% 
using the following approximate expressions: 

yp =y°e(1 - 2 tan 8n) + y~2 tan 0 B (3.2) 

with 0 < tan 0n < 0.5 and 

tanh r 
y l ,=y~, -  - -  {1 + 0.445 exp[-1 .64 tan 3 0 B 

~7 

- 1 . 0 9 ( r -  2.6 cos 0B)2]} -~ (3.3) 

with 0.5 _< tan 0 B _< 1. 
In the Bragg case the primary extinction factor for 

the square-section paraUelepiped is greater than the 
factor for an infinite plate of the same thickness. This 
difference is greatest for small Bragg angles. 

Conclusions 

On the basis of X-ray dynamical diffraction theory the 
calculations of the primary extinction factor yp and of 
the profile function of the scattering curve for a crystal 
block in the form of a square-section parallelepiped 
have been carried out. The calculations made it possible 
to determine the character of the variation of the scat- 

tering curve as a function of the size of the crystal, 
the zero Fourier coefficient of polarizability and the 
Bragg angle. It has been found that the primary extinc- 
tion factor, when the crystal size does not exceed the 
extinction length (r < 1), does not depend on Bragg 
angle and is determined only by the size of the crystal. 
When r > 1 the relationship of primary extinction factor 
to r is affected by the Bragg angle. When the Bragg 
angle is small, the factor yp has oscillations which are 
caused by the Laue diffraction contribution. Approxi- 
mate relationships for estimating the primary extinction 
factor have been found. 
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Self-Crystallizing Molecular Models. V. Molecular Charge Density Contours 
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Molecular models with magnetic multipoles, which are used for simulating crystal structures, should resemble 
the actual molecules not only with respect to multipoles but also in shape. To obtain better knowledge of 
molecular shapes, charge-density contours have been calculated and illustrated for H 2, N 2, F 2, CO2, C2H2, 
CH4, CF4, BF 3 and C2H 4. The orthorhombic, low-temperature structure of solid acetylene established by 
Koski & S~.ndor [Acta Cryst. (1975), B31, 350-3531, has been discussed on the basis of the molecular shape 
and the mechanism of phase transition from the cubic phase. 

Introduction 

The molecular models with magnetic multipoles, 
reported in this series of papers (Kihara, 1963, 1966, 
1970, 1975), were invented for the purpose of ex- 
plaining the crystal structures of nonpolar molecules. 

If the molecules do not possess any appreciable 
electric multipoles, the crystal structures are governed 
by the condition of closest packing of the molecules. 

If, on the other hand, the molecules have sufficiently 
strong electric multipoles, the electrostatic interaction 
often governs the crystal structure. This electrostatic 
multipolar interaction between molecules can be re- 
placed by magnetic interaction between molecular 
models with magnetic multipoles. A structure into 
which these models are assembled will simulate the 
actual crystal structure. 

The molecular model should resemble the actual 


