PIEZO-OPTIC BIREFRINGENCE IN CsCI-TYPE . .CRYSTALS

1. Ionic polarizabilities as calculated from the present
theory

Using experimental values of p,, and assuming the
oscillator strength f; = f, = 1, we calculated the
polarizabilities of the various ions for wavelength 5890
A and compared them with the values obtained by
other workers. The results are given in Table 2.

2. Polarizabilities of ions at different wavelengths
Equation (12) is used to calculate the polarizabilities of

Cs* and I~ ions at different wavelengths in the range
3000-5890 A. The data on the stress—optic dispersion

Table 3. Variation of polarizabilities of Cs* and 1~
with wavelength

Wavelength (A) e, a, a=ag +aq,
3022 2.56 8.56 11-12
3466 2-53 8.00 10-53
4047 2.52 7-59 10-11
4358 2.52 7-43 9.95
5085 2-52 7-27 9-79
5460 2.52 7-11 9:63
5790 2.52 7-06 9.58
5890 2-52 7-04 9.56
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are taken from Laiho.& Korpela (1968) and refractive
indices from -Rodney-(1955). The results are given in
Table 3. The total -polarizability is seen to increase
towards shorter-wavelength, while the polarizability of
the positive ion is almost constant over the entire range.
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Primary Extinction for Finite Crystals. Square-Section Parallelepiped
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The results are given for the calculation of the profile function of the scattering curve and the calculated
primary extinction factor for a crystal in the form of a square-section parallelepiped as a function of its size ,
expressed in extinction length units. The calculations are based on the equations of the dynamical theory of
diffraction. Asymmetry of the scattering curve and a shift of its principal maximum to larger angles, with 7
and the Bragg angle increasing, are found. Approximate expressions for calculating the primary extinction

factor as a function of t are given.

1. Introduction

As is shown, the existing approximations of the theory
of X-ray diffraction in mosaic crystals are usually based
on the supposition of primary and secondary extinction
effects. The primary extinction is connected with the
effect of coherent scattering in a single mosaic block.

Being an incoherent effect of scattering, the secondary
extinction is calculated by the Darwin—Zachariasen
transfer equations. These equations have been used in
estimating primary extinction in finite crystals
(Zachariasen, 1967; Becker & Coppens, 1974),
though they do not really apply to coherent scattering
effects.
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Primary extinction calculations, strictly speaking,
should be based on the dynamical theory of diffraction,
the solution of which for finite crystals of arbitrary
configuration is a difficult problem. In the papers by
Uragami (1969, 1970, 1971) and Afanas’ev & Kohn
(1971) the method of solution of the equations of the
Takagi—Taupin dynamical theory (Takagi, 1962, 1969;
Taupin, 1967) for finite crystals has been developed.
This method can be used for calculating the primary
extinction factor and the angular distribution of X-ray
intensity diffracted in a single mosaic block, which can
be used for determining the scattering cross section per
unit volume of a crystal, taking into account the effect
of primary extinction in the transfer equations
(Zachariasen, 1967; Becker & Coppens, 1974) as well
as for establishing a connection between the primary
and secondary extinction factors.

In this paper, on the basis of the Takagi (1969)
equations, the results of calculating the angular distri-
bution of intensity and the primary extinction factor for
a crystal which is a square-section parallelepiped as a
function of its size and its diffraction parameters are
given.

2. Integral representation for the amplitude and power
of diffracted radiation

The Takagi (1969) equations

9B, K ix.CK
8so“ 2’ 2 !
OF, (on aK) ix, CK
S DY (L o Rty S EN
s, \2 27T T2 @n

determining the field amplitudes E, and E, in the
crystal, can be written as
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P, 0&,,=0 (2.1a)
0sy 05, ’
where
&o.1=E, explioy(s, + 5)) — iB, 5,}, 2.2)
XK X2 CK 1 CK
="y I=Vao =T A=t

B, =aK/2 = eK sin 26, and & = 8, — 0 is the angular
divergence from the Bragg angle; X, X_s X, are the
Fourier components of crystal polarizability for 0, &
and h reciprocal lattice points respectively; K is the
wave number; C = 1 or cos 28; s, and s, are coordi-
nates of the real space along the incident and scattering
vectors respectively.

The conventional integral form of representation of
the solution of (2.1) (Uragami, 1969) can be reduced to

ov ou
U—d —ds, =
fﬁ 75, so+ V 7, ds, =0

FOR FINITE CRYSTALS

ou av
V—d —ds,; =0,
fﬁ 0s, So+ U Os, 5

where U is the amplitude of the field &, or &, and V'is
the Green’s function fulfilling the conditions:

ov
0s,

(2.3)

Vv =1

So = Sor
Si=81p

2.4)

51=Swp

Sep» S1p are coordinates of the point P at which the
values of the field amplitudes are found.

We express the amplitude of the field of the radiation
diffracted in a crystal having the form of square-
section parallelepiped in integral form (Fig. 1). Our
considerations are limited to the case of the Bragg angle
in the range from 0 to 45°. The wave incident at s, on
the crystal surface T,R,R has amplitude E{. Depend-
ing on the boundary conditions of the Green’s function,
the contour R,RT along which E, should be deter-
mined is divided into four parts: Ry R-RB—-B,B,~B,T.

When the integration contours (Fig. 1), which
include RyR, are considered the Green’s function VR
fulfilling the condition (8V%/ds)lg, = O (Uragami,
1969) can be written as:

VE= Jo{za[(sop —50) (54p — 51)11/2}
)’o{[(slp - isu) )’./}’0] - So}
}’I[Smo + (sop )’o/}’l) — SI]
x J[20({[(s1p — $1z,) 1/ Yol — So!
X (810, + (Sop Yo/ 1) — 5.2 (2.5)

On integration contours which include T, T, the Green’s
function V7 fulfilling V7|, , = 0 is determined by

VI =J,{20l(sop — o) (51p — 51"}
—Jof20({sor, + [51p 71/ ) — 511
X {[(sop — soro) Yo/ 7] — s, hv2). (2.6)
On the contours which do not include either the upper

5o So

(a) (©)
Fig. 1. The scheme of crystal division into the areas for calculation
of the diffracted X-ray fields. (a) 0 <tan 8, <0-5, (b) 0-5 <
tan Gy < 1.
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or the lower crystal boundary, the Green’s function is
determined by one term:

V, = Jo{20((sop — S¢) (51 — D121 v )
Here J, and J, are the Bessel functions, y,, =
lcos(n.s, ,)!I, where n is vector of the inner normal to
the surface RyR or T, T.

The case of diffraction when 0 <tan @5 <0-5

When (2.3) is applied to the contours A,P Ry4,,
A4P,R RjA,, A;P;A,A; and T,P,A;T,T,, taking
into account the corresponding boundary conditions
we find amplitudes &, on R R, RB, BB, and B, T:

: Ry

&n=—ic, | Spvias,—io, [ gpvras, @8
Rqy A
: Ry

&= —ic, [ &pVvEds,—io, [ pVids, @9
Ro Ay

&.p,=—i0, | &PV, ds, 2.10)
As
3

&1 =—io, [ EpVIas, @.11)

where & is determined from E'? by (2.2). On passing
to a rectangular coordinate system (Fig. 1) with
ly] = 19,1, we can write the expression for E |, over the
indicated ranges, as

Evp=— 2222:0 e"p["( o’C g, "ﬂ) ]
[f E(y) Ddy, + f E§() Gde]

(2.12)
E io,t . ( KT nfix
= —+
1P, 2sin G, exp[l cos b, tanb, )]
tan 6y tan @,+x
X [ f Ein(xy) Ldx, + Ein(x,) Mdx,
x 0
tan 8, ~x
s [ Epe) Ndx,], (2.13)
0
io,t . ( KT nfix )]
Ep=— —
tPs 2sin 6, exp[l cos by " tan o,
x+tan @y
X f EWN(x,)Mdx,, (2.14)

x—tanég
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ig,t ( kT nfix )
=— ex —_—
tPe 2sin b, p[z cos B, tanéb, ]
1
X [ f Ein(x, ) Mdx,
x—tan 6
1
- En(x,) de,]. (2.15)
2—tanBz—x
Here
D— . KT 8 ; T )
—exp[z ( cos b, M )y'] { 0[cos 0, b= ]
[ 5%, ]} (2.16)
— exp[_ lnﬂyz { [ 2 _y%)l/Z]
[ y%)W]}, @.17)
.V +.Vz
I [( KT np ) KT
=P’ \sin 6, tan, Y27 Cos 93]}
T 2 L2172 X3 — X
><{Jo[sin A (2 = *) ] +.x2 +x
x J2[ . (x%—xz)”z]}, 2.18)
sin 6,
X,
M= [—mﬁ ( tan @ )]
T
2 0 - — 21172 .
X Jo{sin 7 [tan? 6, — (x — x )] }, (2.19)
N—exp[—mﬂ(l + tazﬂ )]
_E — 209 _ 21172
X JZ{Sin 0 [tan? 8, — (x + x,)?] s (2.20)

x
T= —inf( 1 ! )]
exp[ inf ( + and,

T 20_ ey 2]1/2 221
XJO{sinHB[tan p— (2 —x—x)4 }, 2.21)

rOCA\/F,, Fy, e F, fe— Byt
. T CVF,F,’ 2ncos 6,
x,= (1 —y,) tan tg;

Y, =X tan 0,,;

F,, F,, F_, are structure amplitudes for reflections 0,
A and #4; ¢ is the edge length of the parallelepiped sec-
tion; A is the wavelength; v is the unit-cell volume.
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The case of diffraction, when 0-5 < tan 5 < 1

As can be seen from Fig. 1, in this case the ampli-
tude E, on RyR, RB, and B, T will have the same form
as that given above. To determine &, in the area B B,
(Fig. 1) the expression (2.3) is applied to the contour
QP,R,R,Q and, taking account of boundary con-
ditions (2.4), one obtains

Epy=&10— wzfngRdsl f(?l
0
where &, in the area R, Q, is determined as was (2.10)
and in the area 0, Q as was (2.11).
Havmg made the necessary transformations in (2.22)
and in passing to non-dimensional rectangular coordi-
nate system with 1y, = |y, !, one obtains:

£ io, ¢ [( KT nfx )]
=— exp| il ——— + ——
1P 2 sin 6, P cos , tan6,
tan 6y 1
X[ [ EpeyLan, + [ By max,
x 0
tan 0;—x 1
v | EpGe) Nax, - Ei;'(xordxl].
0 2—tan@p—x
(2.23)

Then, from (2.12)-(2.15) and (2.23), the power and
integrated intensity of scattering can easily be deter-
mined.

Integrated intensity can be represented by the
following product:

P=PYp (2.24)

where p, is the kinematical integrated intensity for the
crystal and y, is the primary extinction factor. The
latter is determined by the integral:

Yp= f R(B)dB. (2.25)
-
Here R(f) is a profile function of the scattering curve.
With tan 6, < 0-5
f Jpdx

tan 0, 0,)
an J‘J dy (tan 6;) [
4.2, A

R(ﬁ’)_

1— tano 1
+ f J, dx + J4xdx]; (2.26)
tan 6, 1-tan 6,

with 0-5 <tan f < 1

1
tan 0BJ<J d
R(p)= +
(B el ly
tan 6, 1

+ f Jydx +

FOR FINITE CRYSTALS

where
y y 2
f EirDdy, + f ErGdy,| ,
0 [1}
tang, tan 6, +x
I, = f EpLde,+ [ EpMdx,
0 0
tan 6, —x
2
+ f EnNdx,| ,
0
x+tan6y
. 2
L= [ EpMax|,
Xx—tan Gn
1 1 2
Je=| [ EpMax,- EDTdx,|
x—tan@, 2—tan 6, —x
tan 6, 1
Fe=| | Eprax+ | Epmax,
x 0
tan 6,—x 1 2
+ f Ed Ndx, — EnTdx,| ,
1] 2—tan 6, —x

and .2, is the power of the incident beam.

From (2.26) and (2.27) it follows that, if the cross
section of the crystal is far less than the extinction
length (7 < 1), the function R(f) with 6, <45° and
EiM = const. (plane incident wave) is

sin nﬂ tan 93[ sin 278 ]
R = s nf — . .
B = L g | O
In this case
[ r®yap=1.

The second term in (2.28) is stipulated by the edge
effects.

3. Dependence of the profile function of the scattering
curve and the primary extinction factor on crystal size

Using the above expressions, calculations of the R(f)
function and of the primary extinction factor y,
for the crystal form considered as a function of its
size, 7, have been made using a program written in
Fortran. The calculations were made for a plane
incident wave and a non-absorbing crystal with
different values of parameter k.

From Fig. 2 it can be seen that as the crystal size
increases the principal maximum decreases. In the
chosen scale of measurements of the scattering angle f
the integral half-width of the curve R(f) increases with
the size of crystal. This means that the integral half-
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width of the scattering curve, with the effect of primary
extinction taken into account, decreases more slowly
with crystal size than in the kinematical case.

An effect of the x parameter is revealed by the shift
of the curve maximum R(f) to larger scattering angles.
This shift is caused by the so-called X-ray refraction
effect. The calculation showed that the value of the
curve-maximum shift R(f) at a given Bragg angle and
crystal size, 7, depends linearly on k. At x¥ = O this
maximum occurs with §=0.

It is of interest to examine the dependence on the
Bragg angle of the shift of the scattering curve maxi-
mum for a finite crystal of the form under investigation.
With 6, = 0 in the symmetric crystal setting there is
only the Laue diffraction for which, as is known, there
is no X-ray refraction effect, i.e. at any x value there
is no shift of the reflecting curve maximum. When the
Bragg angle is approaching 90°, only Bragg diffraction
takes place, in which the maximum of the scattering
curve is known to shift to larger angles by an amount
Xo/sin 26,. On the basis of our calculations we esti-
mated the shift of the maximum of the scattering curve
for different Bragg angles (Fig. 3). The shift (46,) has
been expressed in units of y,/sin 26,:

Xo
46 = 7B, cos Gy/kt.
'"/sin 20, 2 ?

Here g, is the position of the maximum of R(f) in
units of . As can be seen from Fig. 3 the shift of the
maximum of the scattering curve for a finite crystal of
the given form depends not only on the Bragg angle but
also on the size of the crystal.

Fig. 4 shows the results of the calculation of the
primary extinction factor for a finite crystal of the given
form. From this figure it can be seen that when crystal
size does not exceed the extinction length the primary

R(B)
1
%—2
3
40-5
4
V\/j/ 5
-3 -2 -1 0 ; 2 - -3 =2 -:2 0 ; é -B
(a) ®

Fig. 2. The profile of the scattering curve for crystal blocks in the
form of a square-section parallelepiped as a function of size: 1.
T<1;2.1=0.5;3.7=1.0;4. 1= 1-5; 5. 1= 2.0; with kx = 2.
(a) 6, = 10°, (b) —6, = 40°.
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extinction factor does not depend on the Bragg angle
but when the size does exceed the extinction length the
Bragg-angle values significantly affect the dependence
of y, on the size of the crystal.

In the case of Laue diffraction (6, = 0) the primary
extinction factor () as a function of the crystal size is
affected by the known oscillation effect and is deter-
mined by the expression:

1
W= [ B -2,
0

(3.1

which is equivalent to the expression given by
Zachariasen (1945, p. 133).

480,

Xo/sin 26, /7//
5//
.8t 4
0-8 /7
‘7
i
i
06 g4
/Y
3
04 2
1
02
20 40 60 80 6,

Fig. 3. Dependence on Bragg angle of the shift of the scattering

curve maximum for a finite crystal with the form of a square-

section parallelepiped. Solid line — calculations, dashed line —

approximate interpolation: 1. 7 =0-1;2. 7= 1; 3. r = 2.

0.75

0-5

S
0-25 4

0 1 2 3 4 T
Fig. 4. Primary extinction factor vs the crystal size for different
Bragg angles: 1.0°;2. 10°; 3. 20°; 4. 30°; 5. 40° and 6. 45°.
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The analysis of the calculations carried out has
shown that with 7 < 3, the value of the primary extinc-
tion factor can be determined with an error of 1-5%
using the following approximate expressions:

yp=y2(1 —2tan ;) + yL 2 tan 6, (3.2)
with 0 < tan 6, < 0-5 and
tanh
Yp=Yp= ;e {1 + 0-445 exp[—1-64 tan® 6,
— 1.09(t — 2-6 cos 6,)*]}* (3.3)

with 0-5 <tan 6, < 1.

In the Bragg case the primary extinction factor for
the square-section parallelepiped is greater than the
factor for an infinite plate of the same thickness. This
difference is greatest for small Bragg angles.

Conclusions

On the basis of X-ray dynamical diffraction theory the
calculations of the primary extinction factor y, and of
the profile function of the scattering curve for a crystal
block in the form of a square-section parallelepiped
have been carried out. The calculations made it possible
to determine the character of the variation of the scat-
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tering curve as a function of the size of the crystal,
the zero Fourier coefficient of polarizability and the
Bragg angle. It has been found that the primary extinc-
tion factor, when the crystal size does not exceed the
extinction length (r < 1), does not depend on Bragg
angle and is determined only by the size of the crystal.
When 7 > 1 the relationship of primary extinction factor
to 7 is affected by the Bragg angle. When the Bragg
angle is small, the factor y, has oscillations which are
caused by the Laue diffraction contribution. Approxi-
mate relationships for estimating the primary extinction
factor have been found.
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Self-Crystallizing Molecular Models. V. Molecular Charge Density Contours
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Molecular models with magnetic multipoles, which are used for simulating crystal structures, should resemble
the actual molecules not only with respect to multipoles but also in shape. To obtain better knowledge of
molecular shapes, charge-density contours have been calculated and illustrated for H,, N,, F,, CO,, C,H,,
CH,, CF,, BF; and C,H,. The orthorhombic, low-temperature structure of solid acetylene established by
Koski & Sandor [4cta Cryst. (1975), B31, 350-353], has been discussed on the basis of the molecular shape
and the mechanism of phase transition from the cubic phase.

Introduction

The molecular models with magnetic multipoles,
reported in this series of papers (Kihara, 1963, 1966,
1970, 1975), were invented for the purpose of ex-
plaining the crystal structures of nonpolar molecules.

If the molecules do not possess any appreciable
electric multipoles, the crystal structures are governed
by the condition of closest packing of the molecules.

If, on the other hand, the molecules have sufficiently
strong electric multipoles, the electrostatic interaction
often governs the crystal structure. This electrostatic
multipolar interaction between molecules can be re-
placed by magnetic interaction between molecular
models with magnetic multipoles. A structure into
which these models are assembled will simulate the
actual crystal structure.

The molecular model should resemble the actual



